34,739 research outputs found

    Exotic QQqˉqˉQQ\bar{q}\bar{q}, QQqˉsˉQQ\bar{q}\bar{s} and QQsˉsˉQQ\bar{s}\bar{s} states

    Full text link
    After constructing the possible JP=0βˆ’,0+,1βˆ’J^P=0^-, 0^+, 1^- and 1+1^+ QQqΛ‰qΛ‰QQ\bar{q}\bar{q} tetraquark interpolating currents in a systematic way, we investigate the two-point correlation functions and extract the corresponding masses with the QCD sum rule approach. We study the QQqΛ‰qΛ‰QQ\bar{q}\bar{q}, QQqΛ‰sΛ‰QQ\bar{q}\bar{s} and QQsΛ‰sΛ‰QQ\bar{s}\bar{s} systems with various isospins I=0,1/2,1I=0, 1/2, 1. Our numerical analysis indicates that the masses of doubly-bottomed tetraquark states are below the threshold of the two bottom mesons, two bottom baryons and one doubly bottomed baryon plus one anti-nucleon. Very probably these doubly-bottomed tetraquark states are stable.Comment: 37 pages, 2 figure

    LATTE: Application Oriented Social Network Embedding

    Full text link
    In recent years, many research works propose to embed the network structured data into a low-dimensional feature space, where each node is represented as a feature vector. However, due to the detachment of embedding process with external tasks, the learned embedding results by most existing embedding models can be ineffective for application tasks with specific objectives, e.g., community detection or information diffusion. In this paper, we propose study the application oriented heterogeneous social network embedding problem. Significantly different from the existing works, besides the network structure preservation, the problem should also incorporate the objectives of external applications in the objective function. To resolve the problem, in this paper, we propose a novel network embedding framework, namely the "appLicAtion orienTed neTwork Embedding" (Latte) model. In Latte, the heterogeneous network structure can be applied to compute the node "diffusive proximity" scores, which capture both local and global network structures. Based on these computed scores, Latte learns the network representation feature vectors by extending the autoencoder model model to the heterogeneous network scenario, which can also effectively unite the objectives of network embedding and external application tasks. Extensive experiments have been done on real-world heterogeneous social network datasets, and the experimental results have demonstrated the outstanding performance of Latte in learning the representation vectors for specific application tasks.Comment: 11 Pages, 12 Figures, 1 Tabl

    Deuteron-like states composed of two doubly charmed baryons

    Full text link
    We present a systematic investigation of the possible molecular states composed of a pair of doubly charmed baryons (ΞccΞcc\Xi_{cc}\Xi_{cc}) or one doubly charmed baryon and one doubly charmed antibaryon (ΞccΞžΛ‰cc)(\Xi_{cc}\bar{\Xi}_{cc}) within the framework of the one-boson-exchange-potential model. For the spin-triplet systems, we take into account the mixing between the 3S1{}^3S_1 and 3D1{}^3D_1 channels. For the baryon-baryon system ΞccΞcc\Xi_{cc}\Xi_{cc} with (R,I)=(3Λ‰,1/2)(R,I) = (\bar{3}, 1/2) and (3Λ‰,0)(\bar{3}, 0), where RR and II represent the group representation and the isospin of the system, respectively, there exist loosely bound molecular states. For the baryon-antibaryon system ΞccΞžΛ‰cc\Xi_{cc}\bar{\Xi}_{cc} with (R,I)=(8,1)(R,I) = (8, 1), (8,1/2)(8, 1/2) and (8,0)(8,0), there also exist deuteron-like molecules. The BccBΛ‰ccB_{cc}\bar{B}_{cc} molecular states may be produced at LHC. The proximity of their masses to the threshold of two doubly charmed baryons provides a clean clue to identify them.Comment: 18 pages, 8 figure
    • …
    corecore